Generalized Variable Parameter HMMs for Noise Robust Speech Recognition
نویسندگان
چکیده
Handling variable ambient noise is a challenging task for automatic speech recognition (ASR) systems. To address this issue, multi-style, noise condition independent (CI) model training using speech data collected in diverse noise environments, or uncertainty decoding techniques can be used. An alternative approach is to explicitly approximate the continuous trajectory of Gaussian component mean and variance parameters against the varying noise level, for example, using variable parameter HMMs (VP-HMM). This paper investigates a more generalized form of variable parameter HMMs (GVP-HMM). In addition to Gaussian component means and variances, it can also provide a more compact trajectory modelling for tied linear transformations. An alternative noise condition dependent (CD) training algorithm is also proposed to handle the bias to training noise condition distribution. Consistent error rate gains were obtained over conventional VP-HMM mean and variance only trajectory modelling on a medium vocabulary Mandarin Chinese in-car navigation command recognition task.
منابع مشابه
Feature space generalized variable parameter HMMs for noise robust recognition
Handling variable ambient noise is a challenging task for automatic speech recognition (ASR) systems. To address this issue, multi-style training using speech data collected in diverse noise environments, noise adaptive training or uncertainty decoding techniques can be used. An alternative approach is to explicitly approximate the continuous trajectory of Gaussian component or model space line...
متن کاملEfficient use of DNN bottleneck features in generalized variable parameter HMMs for noise robust speech recognition
Recently a new approach to incorporate deep neural networks (DNN) bottleneck features into HMM based acoustic models using generalized variable parameter HMMs (GVPHMMs) was proposed. As Gaussian component level polynomial interpolation is performed for each high dimensional DNN bottleneck feature vector at a frame level, conventional GVPHMMs are computationally expensive to use in recognition t...
متن کاملDeep neural network bottleneck features for generalized variable parameter HMMs
Recently deep neural networks (DNNs) have become increasingly popular for acoustic modelling in automatic speech recognition (ASR) systems. As the bottleneck features they produce are inherently discriminative and contain rich hidden factors that influence the surface acoustic realization, the standard approach is to augment the conventional acoustic features with the bottleneck features in a t...
متن کاملDiscriminative training of variable-parameter HMMs for noise robust speech recognition
We propose a new type of variable-parameter hidden Markov model (VPHMM) whose mean and variance parameters vary each as a continuous function of additional environmentdependent parameters. Different from the polynomialfunction-based VPHMM proposed by Cui and Gong (2007), the new VPHMM uses cubic splines to represent the dependency of the means and variances of Gaussian mixtures on the environme...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011